Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 43(3): 745-759, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29362970

RESUMO

Systemic inflammation triggered by lipopolysaccharide (LPS) administration disrupts blood-brain barrier (BBB) homeostasis in animal models. This event leads to increased susceptibility of several encephalic structures to potential neurotoxicants present in the bloodstream. In this study, we investigated the effects of alternate intraperitoneal injections of LPS on BBB permeability, social recognition memory and biochemical parameters in the striatum 24 h and 60 days after treatments. In addition, we investigated whether the exposure to a moderate neurotoxic dose of the herbicide paraquat could potentiate LPS-induced neurotoxicity. LPS administration caused a transient disruption of BBB integrity, evidenced by increased levels of exogenously administered sodium fluorescein in the striatum. Also, LPS exposure caused delayed impairment in social recognition memory (evaluated at day 38 after treatments) and increase in the striatal levels of 3-nitrotyrosine. These events were observed in the absence of significant changes in motor coordination and in the levels of tyrosine hydroxylase (TH) in the striatum and substantia nigra. PQ exposure, which caused a long-lasting decrease of striatal mitochondrial complex I activity, did not modify LPS-induced behavioral and striatal biochemical changes. The results indicate that systemic administration of LPS causes delayed social recognition memory deficit and striatal nitrosative stress in adult mice and that the coexposure to a moderately toxic dose of PQ did not magnify these events. In addition, PQ-induced inhibition of striatal mitochondrial complex I was also not magnified by LPS exposure, indicating the absence of synergic neurotoxic effects of LPS and PQ in this experimental model.


Assuntos
Comportamento Animal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Estresse Nitrosativo/efeitos dos fármacos , Paraquat/toxicidade , Animais , Corpo Estriado/metabolismo , Masculino , Memória/efeitos dos fármacos , Camundongos , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Síndromes Neurotóxicas/tratamento farmacológico , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
2.
Cell Mol Neurobiol ; 36(6): 1015-1022, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26749581

RESUMO

α-Tocopheryl phosphate (αTP) is a phosphorylated form of α-tocopherol. Since it is phosphorylated in the hydroxyl group that is essential for the antioxidant property of α-tocopherol, we hypothesized that αTP would modulate the antioxidant system, rather than being an antioxidant agent per se. α-TP demonstrated antioxidant activity in vitro against iron-induced oxidative stress in a mitochondria-enriched fraction preparation treated with 30 or 100 µM α-TP. However, this effect was not observed ex vivo with mitochondrial-enriched fraction from mice treated with an intracerebroventricular injection of 0.1 or 1 nmol/site of αTP. Two days after treatment (1 nmol/site αTP), peroxiredoxin 2 (Prx2) and glutathione reductase (GR) expression and GR activity were decreased in cerebral cortex and hippocampus. Glutathione content, glutathione peroxidase, and thioredoxin reductase activities were not affected by αTP. In conclusion, the persistent decrease in GR and Prx2 protein content is the first report of an in vivo effect of αTP on protein expression in the mouse brain, potentially associated to a novel and biologically relevant function of this naturally occurring compound.


Assuntos
Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Glutationa Redutase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/metabolismo , alfa-Tocoferol/análogos & derivados , Animais , Antioxidantes/metabolismo , Encéfalo/metabolismo , Glutationa Peroxidase/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , alfa-Tocoferol/farmacologia
3.
Arch Toxicol ; 90(3): 647-60, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25618550

RESUMO

The organophosphorus (OP) pesticide malathion is a neurotoxic compound whose acute toxicity is primarily caused by the inhibition of acetylcholinesterase (AChE), leading to cholinergic syndrome-related symptoms. Some lines of evidence indicate that long-term exposure to low levels of OP may produce neuropsychiatric and/or neurobehavioral signs that do not necessarily involve the AChE inhibition. This study evaluated the effects of a repeated (15-day period) and low-dose malathion exposure on spatial memory and discrimination (object location task), as well as on biochemical parameters in the hippocampus of mice [AChE and mitochondrial chain complexes activities; levels of proapoptotic proteins (Bax and Bak) and cholinergic neuronal and astroglial markers (ChAT and GFAP, respectively)]. Malathion treatments (30 and 100 mg/kg, s.c.) did not affect the body weight of animals and caused no evident signs of cholinergic toxicity throughout the treatment, although the highest dose (100 mg/kg) was associated with inhibition of AChE activity. Malathion-exposed animals showed a significant impairment on spatial memory and discrimination, which was correlated with a decrease in the mitochondrial complex I activity in the hippocampus. Moreover, malathion increased the levels of proapoptotic proteins and induced astroglial activation. The results show that long-term malathion exposure, at a dose that does not affect hippocampal AChE activity (30 mg/kg), caused impaired spatial memory and discrimination in mice that was related to hippocampal mitochondrial dysfunctional, astrogliosis and apoptosis. When extrapolated to humans, such results shed light on noncholinergic mechanisms likely related to the neurobehavioral and cognitive deficits observed in individuals chronically exposed to this pesticide.


Assuntos
Astrócitos/efeitos dos fármacos , Transtornos Cognitivos/induzido quimicamente , Hipocampo/efeitos dos fármacos , Inseticidas/toxicidade , Malation/toxicidade , Animais , Apoptose/efeitos dos fármacos , Astrócitos/patologia , Inibidores da Colinesterase/toxicidade , Relação Dose-Resposta a Droga , Hipocampo/patologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Memória Espacial/efeitos dos fármacos , Testes de Toxicidade Crônica/métodos
4.
J Alzheimers Dis ; 41(1): 43-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24577472

RESUMO

Familial hypercholesterolemia is caused by inherited genetic abnormalities that directly or indirectly affect the function of the low-density lipoprotein (LDL) receptor. This condition is characterized by defective catabolism of LDL which results in increased plasma cholesterol concentrations and premature coronary artery disease. Nevertheless, there is increasing preclinical and clinical evidence indicating that familial hypercholesterolemia subjects show a particularly high incidence of mild cognitive impairment. Moreover, the LDL receptor (LDLr) has been implicated as the main central nervous system apolipoprotein E receptor that regulates amyloid deposition in distinct mouse models of ß-amyloidosis. In this regard, herein we hypothesized that the lack of LDLr would enhance the susceptibility to amyloid-ß-(Aß)-induced neurotoxicity in mice. Using the acute intracerebroventricular injection of aggregated Aß(1-40) peptide (400 pmol/mouse), a useful approach for the investigation of molecular mechanisms involved in Aß toxicity, we observed oxidative stress, neuroinflammation, and neuronal membrane damage within the hippocampus of C57BL/6 wild-type mice, which were associated with spatial reference memory and working memory impairments. In addition, our data show that LDLr knockout (LDLr(-/-)) mice, regardless of Aß treatment, displayed memory deficits and increased blood-brain barrier permeability. Nonetheless, LDLr(-/-) mice treated with Aß(1-40) peptide presented increased acetylcholinesterase activity, astrogliosis, oxidative imbalance, and cell permeability within the hippocampus in comparison with Aß(1-40)-treated C57BL/6 wild-type mice. Overall, the present study shows that the lack of LDLr increases the susceptibility to Aß-induced neurotoxicity in mice providing new evidence about the crosslink between familial hypercholesterolemia and cognitive impairment.


Assuntos
Amiloidose/fisiopatologia , Hipocampo/fisiopatologia , Transtornos da Memória/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Receptores de LDL/metabolismo , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides , Amiloidose/complicações , Amiloidose/patologia , Animais , Antioxidantes/metabolismo , Astrócitos/patologia , Astrócitos/fisiologia , Barreira Hematoencefálica/fisiopatologia , Permeabilidade Capilar/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Modelos Animais de Doenças , Gliose/patologia , Gliose/fisiopatologia , Hipocampo/patologia , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Memória de Curto Prazo/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroimunomodulação/fisiologia , Estresse Oxidativo/fisiologia , Fragmentos de Peptídeos , Córtex Pré-Frontal/patologia , Receptores de LDL/genética , Memória Espacial/fisiologia , Superóxido Dismutase/metabolismo
5.
Biomed Res Int ; 2013: 537279, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24350274

RESUMO

Organochalcogens, particularly ebselen, have been used in experimental and clinical trials with borderline efficacy. (PhSe)2 and (PhTe)2 are the simplest of the diaryl dichalcogenides and share with ebselen pharmacological properties. In view of the concerns with the use of mammals in studies and the great number of new organochalcogens with potential pharmacological properties that have been synthesized, it becomes important to develop screening protocols to select compounds that are worth to be tested in vivo. This study investigated the possible use of isolated human white cells as a preliminary model to test organochalcogen toxicity. Human leucocytes were exposed to 5-50 µM of ebselen, (PhSe)2, or (PhTe)2. All compounds were cytotoxic (Trypan's Blue exclusion) at the highest concentration tested, and Ebselen was the most toxic. Ebselen and (PhSe)2 were genotoxic (Comet Assay) only at 50 µM, and (PhTe)2 at 5-50 µM. Here, the acute cytotoxicity did not correspond with in vivo toxicity of the compounds. But the genotoxicity was in the same order of the in vivo toxicity to mice. These results indicate that in vitro genotoxicity in white blood cells should be considered as an early step in the investigation of potential toxicity of organochalcogens.


Assuntos
Azóis/farmacologia , Derivados de Benzeno/farmacologia , Leucócitos/efeitos dos fármacos , Mutagênicos/farmacologia , Compostos Organometálicos/farmacologia , Compostos Organosselênicos/farmacologia , Humanos , Isoindóis , Testes de Mutagenicidade/métodos
6.
J Mol Neurosci ; 49(1): 68-79, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23054587

RESUMO

Studies have demonstrated an association between stressful conditions and the onset of clinical depression. Considering the antidepressant-like properties of ascorbic acid in both experimental and clinical approaches, we evaluated the beneficial effect of this vitamin on restraint stress-induced behavioral and neurochemical alterations. Acute restraint stress caused a depressive-like behavior in the forced swimming test, accompanied by increased lipid peroxidation (cerebral cortex and hippocampus); increased superoxide dismutase (cerebral cortex and hippocampus), glutathione reductase (cerebral cortex), and glutathione peroxidase (cerebral cortex and hippocampus) activities; and elevated expression of Bcl-2 (hippocampus). Oral administration of ascorbic acid (1 mg/kg) or fluoxetine (10 mg/kg) 1 h before restraint stress prevented the stress-induced increase on immobility time in the forced swimming test. Moreover, this vitamin reduced lipid peroxidation to control levels and restored the activity of superoxide dismutase, glutathione reductase, and glutathione peroxidase. Ascorbic acid had no effect on the increased level of Bcl-2 induced by stress. Glutathione levels, glycogen synthase kinase-3ß phosphorylation, and Bax expression were not altered by stress or ascorbic acid administration. Besides reinforcing the antioxidant potential of ascorbic acid, our results support the notion that oxidative stress plays a role in the pathogenesis and treatment of stress-induced depression.


Assuntos
Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Transtorno Depressivo/tratamento farmacológico , Estresse Psicológico/complicações , Vitaminas/uso terapêutico , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Córtex Cerebral/enzimologia , Córtex Cerebral/metabolismo , Transtorno Depressivo/etiologia , Feminino , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/enzimologia , Hipocampo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Natação , Transcrição Gênica/efeitos dos fármacos , Vitaminas/farmacologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
7.
J Psychiatr Res ; 46(3): 331-40, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22154133

RESUMO

Reactive oxygen species (ROS) have been shown to play a role in the pathophysiology of depression. Taking into account that experimental chronic unpredictable stress (CUS) induces depressive-like behavior and that ascorbic acid has antidepressant-like effect in animals, the objective of this study was to investigate the influence of ascorbic acid on depressive-like behavior induced by CUS paradigm, serum corticosterone levels and markers of oxidative stress in cerebral cortex and hippocampus of mice. Animals were submitted to CUS procedure during 14 days. From the 8th to the 14th day mice received ascorbic acid (10 mg/kg) or fluoxetine (10 mg/kg, conventional antidepressant, positive control) once a day by oral route. On 15th day behavioral and biochemical parameters were analyzed. CUS exposure caused a depressive-like behavior evidenced by the increased immobility time in the tail suspension test and decreased time in which mice spent grooming in the splash test. Depressive-like behavior induced by CUS was accompanied by a significant increased lipid peroxidation (cerebral cortex and hippocampus), decreased catalase (CAT) (cerebral cortex and hippocampus) and glutathione reductase (GR) (hippocampus) activities and reduced levels of glutathione (cerebral cortex). Repeated ascorbic acid or fluoxetine administration significantly reversed CUS-induced depressive-like behavior and oxidative damage. No alteration was observed in locomotor activity, corticosterone levels and glutathione peroxidase (GPx) activity. These findings indicate a rapid and robust effect of ascorbic acid in reversing behavioral and biochemical alterations induced by CUS in mice, suggesting that this vitamin may be an alternative approach for the management of depressive symptoms.


Assuntos
Ácido Ascórbico/farmacologia , Córtex Cerebral/metabolismo , Depressão , Fluoxetina/farmacologia , Hipocampo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Antioxidantes/farmacologia , Catalase/metabolismo , Corticosterona/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Resultado do Tratamento
8.
Neurotoxicology ; 32(6): 888-95, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21723318

RESUMO

The organophosphorus (OP) pesticide malathion is a highly neurotoxic compound and its toxicity is primarily caused by the inhibition of acetylcholinesterase (AChE), leading to cholinergic syndrome. Although oximes have been used as potential antidotal treatments in malathion poisoning because of their potential capability to reactivate the inhibited enzyme, the clinical experience with the clinically available oximes (e.g. pralidoxime) is disappointing and their routine use has been questioned. In the present study, we investigated the potency of pralidoxime and K074 in reactivating AChE after acute exposure to malathion, as well as in preventing malathion-induced changes in oxidative-stress related parameters in mice. Malathion (1.25 g/kg, s.c.) induced a significant decrease in cortico-cerebral, hippocampal and blood AChE activities at 24h after exposure. Oxime treatments (1/4 of LD(50), i.m., 6h after malathion poisoning) showed that pralidoxime significantly reversed malathion-induced blood AChE inhibition, although no significant effects were observed after K074 treatment. Interestingly, both oximes tested were unable to reactivate the cortico-cerebral and hippocampal enzymes after intramuscular or intracerebroventricular injection (1/4 of LD(50), 6h after malathion poisoning). Biochemical parameters related to oxidative stress (cerebro-cortical and hippocampal glutathione peroxidase, glutathione reductase and catalase activities, as well as lipid peroxidation) were not affected in animals treated with malathion, oximes or atropine alone. However, pralidoxime and K074, administered intramuscularly 6h after malathion poisoning, were able to increase the endogenous activities of these antioxidant enzymes in the prefrontal cortex and hippocampus. Taken together, the results presented herein showed that pralidoxime (the most common clinically used oxime) and the recently developed oxime K074, administered 6h after malathion poisoning, were unable to reactivate the inhibited AChE in mouse prefrontal cortex and hippocampus. However, only pralidoxime significantly reversed the blood AChE inhibition induced by malathion poisoning. This indicates that peripheral and central AChE activities are not necessarily correlated after the treatment of OP compounds and/or oximes, which should be taken into account in the diagnosis and management of OP-exposed humans. In addition, considering that the available treatments to malathion poisoning appear to be ineffective, the present study reinforce the need to search for potential new AChE reactivators able to efficiently reactivate the brain and blood AChEs after malathion poisoning.


Assuntos
Acetilcolinesterase/metabolismo , Antídotos/farmacologia , Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Butanos/farmacologia , Inibidores da Colinesterase/intoxicação , Reativadores da Colinesterase/farmacologia , Inseticidas/intoxicação , Malation/intoxicação , Oximas/farmacologia , Compostos de Pralidoxima/farmacologia , Compostos de Piridínio/farmacologia , Acetilcolinesterase/sangue , Animais , Antídotos/toxicidade , Encéfalo/enzimologia , Butanos/toxicidade , Catalase/metabolismo , Reativadores da Colinesterase/toxicidade , Proteínas Ligadas por GPI/sangue , Proteínas Ligadas por GPI/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Dose Letal Mediana , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Oximas/toxicidade , Intoxicação/tratamento farmacológico , Intoxicação/enzimologia , Compostos de Pralidoxima/toxicidade , Compostos de Piridínio/toxicidade , Fatores de Tempo
9.
Basic Clin Pharmacol Toxicol ; 107(3): 768-73, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20406208

RESUMO

Malathion is an organophosphate (OP) pesticide whose toxicity depends on its bioactivation to malaoxon. Human malathion poisoning has been treated with oximes (mainly pralidoxime) in an attempt to reactivate OP-inhibited acetylcholinesterase (AChE). However, pralidoxime has shown unsatisfactory therapeutic effects in malathion poisoning and its routine use has been questioned. In this study, we evaluated the in vitro potency of standards and newly developed oximes in reactivating malaoxon-inhibited AChE derived from mouse brain supernatants. Malaoxon displayed a concentration-dependent inhibitory effect on mouse brain AChE (IC(50) = 2.36 microM), and pralidoxime caused a modest reactivating effect (30% of reactivation at 600 microM). Obidoxime and trimedoxime, as well as K047 and K075, displayed higher reactivating effects (from 55% to 70% of reactivation at 600 muM) when compared with pralidoxime. The results show that obidoxime, trimedoxime, K074 and K075 present higher reactivating effects on malaoxon-inhibited AChE under in vitro conditions when compared with pralidoxime. Taking into account the unsatisfactory effects of pralidoxime as antidotal treatment in malathion poisonings, the present results suggest that obidoxime, trimedoxime, K074 and K075 might be interesting therapeutic strategies to reactivate malaoxon-inhibited AChE in malathion poisonings.


Assuntos
Antídotos/farmacologia , Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Inseticidas/toxicidade , Malation/análogos & derivados , Oximas/farmacologia , Acetilcolinesterase/metabolismo , Animais , Encéfalo/enzimologia , Butanos/farmacologia , Repressão Enzimática/efeitos dos fármacos , Malation/toxicidade , Masculino , Camundongos , Cloreto de Obidoxima/farmacologia , Compostos de Pralidoxima/farmacologia , Compostos de Piridínio/farmacologia , Trimedoxima/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...